dc.creatorBoukrouche, Mahdi
dc.creatorTarzia, Domingo Alberto
dc.date.accessioned2017-12-20T17:52:47Z
dc.date.accessioned2018-11-06T14:50:14Z
dc.date.available2017-12-20T17:52:47Z
dc.date.available2018-11-06T14:50:14Z
dc.date.created2017-12-20T17:52:47Z
dc.date.issued2014-06
dc.identifierTarzia, Domingo Alberto; Boukrouche, Mahdi; Global solution to a non-classical heat problem in the semi-space r+ × rn−1; Univ Press Inc; Quarterly Of Applied Mathematics; 72; 2; 6-2014; 347-361
dc.identifier0033-569X
dc.identifierhttp://hdl.handle.net/11336/31128
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1890923
dc.description.abstractWe consider the non-classical heat equation in the n-dimensional domain D = R+ × Rn−1 for which the internal energy supply depends on the heat flux on the boundary S = ∂D. The problem is motivated by the modeling of temperature regulation in the medium. Using the Green function for the domain D, the solution is found for an integral representation depending on the heat flux V on S which is an additional unknown of the problem. We obtain that V must satisfy a Volterra integral equation of second kind at time t with a parameter in Rn−1. Under some conditions on data, we show that there exists a unique local solution which can be extended globally in time. This work generalizes the results obtained in the one-dimensional case
dc.languageeng
dc.publisherUniv Press Inc
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1090/S0033-569X-2014-01344-1
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/qam/2014-72-02/S0033-569X-2014-01344-1/home.html
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectNon-classical heat equation
dc.subjectglobal solution
dc.titleGlobal solution to a non-classical heat problem in the semi-space r+ × rn−1
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución