dc.creatorBottazzi, Tamara Paula
dc.creatorVarela, Alejandro
dc.date.accessioned2016-01-05T14:26:38Z
dc.date.accessioned2018-11-06T14:49:50Z
dc.date.available2016-01-05T14:26:38Z
dc.date.available2018-11-06T14:49:50Z
dc.date.created2016-01-05T14:26:38Z
dc.date.issued2013-09
dc.identifierBottazzi, Tamara Paula; Varela, Alejandro; Best approximation by diagonal compact operators; Elsevier Science Inc; Linear Algebra And Its Applications; 439; 10; 9-2013; 3044-3056
dc.identifier0024-3795
dc.identifierhttp://hdl.handle.net/11336/3338
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1890855
dc.description.abstractWe study the existence and characterization properties of compact Hermitian operators C on a Hilbert space H such that the norm of C is less or equal to that of C + D , for all the real and compact diagonals D in a fixed base of H (in the operator norm). We also exhibit a positive trace class operator that fails to attain the minimum in a compact diagonal.
dc.languageeng
dc.publisherElsevier Science Inc
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2013.08.025
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.laa.2013.08.025
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectMINIMAL COMPACT OPERATOR
dc.subjectDIAGONAL OPERATOR
dc.subjectQUOTIENT OPERATOR NORM
dc.subjectBEST APPROXIMATION
dc.titleBest approximation by diagonal compact operators
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución