dc.creatorIdelsohn, Sergio Rodolfo
dc.creatorGimenez, Juan Marcelo
dc.creatorMarti, Julio
dc.creatorNigro, Norberto Marcelo
dc.date.accessioned2018-03-07T21:19:30Z
dc.date.accessioned2018-11-06T14:47:33Z
dc.date.available2018-03-07T21:19:30Z
dc.date.available2018-11-06T14:47:33Z
dc.date.created2018-03-07T21:19:30Z
dc.date.issued2017-01
dc.identifierIdelsohn, Sergio Rodolfo; Gimenez, Juan Marcelo; Marti, Julio; Nigro, Norberto Marcelo; Elemental Enriched Spaces for the Treatment of Weak and Strong Discontinuous Fields; Elsevier Science Sa; Computer Methods in Applied Mechanics and Engineering; 313; 1-2017; 535-559
dc.identifier0045-7825
dc.identifierhttp://hdl.handle.net/11336/38225
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1890362
dc.description.abstractThis paper presents a finite element that incorporates weak, strong and both weak plus strong discontinuities with linear interpolations of the unknown jumps for the modeling of internal interfaces. The new enriched space is built by subdividing each triangular or tetrahedral element in several standard linear sub-elements. The new degrees of freedom coming from the assembly of the sub-elements can be eliminated by static condensation at the element level, resulting in two main advantages: first, an elemental enrichment instead of a nodal one, which presents an important reduction of the computing time when the internal interface is moving all around the domain and second, an efficient implementation involving minor modifications allowing to reuse existing finite element codes. The equations for the internal interface are constructed by imposing the local equilibrium between the stresses in the bulk of the element and the tractions driving the cohesive law, with the proper equilibrium operators to account for the linear kinematics of the discontinuity. To improve the continuity of the unknowns on both sides of the elements on which a static condensation is done, a contour integral has been added. These contour integrals named inter-elemental forces can be interpreted as a “do nothing” boundary condition (Coppola-Owen and Codina, 2011) published in another context, or as the usage of weighting functions that ensure convergence of the approach as proposed by J.C. Simo (Simo and Rifai, 1990). A series of numerical tests for scalar unknowns as a simple representation of more general numerical simulations are presented to illustrate the performance of the enriched elemental space.
dc.languageeng
dc.publisherElsevier Science Sa
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0045782516312804
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.cma.2016.09.048
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectCRACKS
dc.subjectDISCONTINUOUS FIELDS
dc.subjectEFEM
dc.subjectENRICHED FE SPACES
dc.subjectINTERNAL INTERFACES
dc.subjectMULTI-MATERIALS
dc.titleElemental Enriched Spaces for the Treatment of Weak and Strong Discontinuous Fields
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución