dc.creatorWolanski, Noemi Irene
dc.date.accessioned2017-06-26T19:57:23Z
dc.date.accessioned2018-11-06T14:44:20Z
dc.date.available2017-06-26T19:57:23Z
dc.date.available2018-11-06T14:44:20Z
dc.date.created2017-06-26T19:57:23Z
dc.date.issued2015-04
dc.identifierWolanski, Noemi Irene; Local Bounds, Harnack's Inequality and Hölder Continuity for for divergence type elliptic equations with non-standard growth; Unión Matemática Argentina; Revista de la Union Matemática Argentina; 56; 1; 4-2015; 73-105
dc.identifier0041-6932
dc.identifierhttp://hdl.handle.net/11336/18906
dc.identifier1669-9637
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1889689
dc.description.abstractWe obtain a Harnack type inequality for solutions to elliptic equations in divergence form with non-standard p(x)-type growth. A model equation is the inhomogeneous p(x)-Laplacian. Namely, ∆p(x)u := div |∇u| p(x)−2∇u = f(x) in Ω, for which we prove Harnack’s inequality when f ∈ Lq0 (Ω) if max{1, N p1 } < q0 ≤ ∞. The constant in Harnack’s inequality depends on u only through k|u| p(x)k p2−p1 L1(Ω) . Dependence of the constant on u is known to be necessary in the case of variable p(x). As in previous papers, log-H¨older continuity on the exponent p(x) is assumed. We also prove that weak solutions are locally bounded and H¨older continuous when f ∈ Lq0(x) (Ω) with q0 ∈ C(Ω) and max{1, N p(x) } < q0(x) in Ω. These results are then generalized to elliptic equations div A(x, u, ∇u) = B(x, u, ∇u) with p(x)-type growth.
dc.languageeng
dc.publisherUnión Matemática Argentina
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v56n1/v56n1a05.pdf
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1309.2227
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectHarnack's inequality
dc.subjectVariable exponent spaces
dc.subjectLocal bounds.
dc.titleLocal Bounds, Harnack's Inequality and Hölder Continuity for for divergence type elliptic equations with non-standard growth
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución