dc.creatorCortiñas, Guillermo Horacio
dc.creatorAbadie, Beatriz
dc.date.accessioned2017-04-05T18:21:34Z
dc.date.accessioned2018-11-06T14:43:48Z
dc.date.available2017-04-05T18:21:34Z
dc.date.available2018-11-06T14:43:48Z
dc.date.created2017-04-05T18:21:34Z
dc.date.issued2013-12
dc.identifierCortiñas, Guillermo Horacio; Abadie, Beatriz; Homotopy invariance through small stabilizations; Springer; Journal of homotopy and related structures; 10; 3; 12-2013; 459–493
dc.identifier2193-8407
dc.identifierhttp://hdl.handle.net/11336/14843
dc.identifier1512-2891
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1889563
dc.description.abstractWe associate an algebra Γ∞(A) to each bornological algebra A . Each symmetric ideal SS of the algebra ℓ∞ of complex bounded sequences gives rise to an ideal IS(A) of Γ∞(A) . We show that all ideals arise in this way when AA is the algebra of complex numbers. We prove that for suitable S , Weibel’s K -theory of IS(A) is homotopy invariant, and show that the failure of the map from Quillen’s to Weibel’s K -theory of IS(A) to be an isomorphism is measured by cyclic homology.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s40062-013-0069-9
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1007/s40062-013-0069-9
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectHomotopy invariance
dc.subjectCalkin's theorem
dc.subjectOperator ideals
dc.subjectInverse semigroup crossed products
dc.titleHomotopy invariance through small stabilizations
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución