dc.creatorBaya, Ariel Emilio
dc.creatorLarese, Monica Graciela
dc.creatorNamias, Rafael
dc.date.accessioned2018-07-26T16:00:57Z
dc.date.accessioned2018-11-06T14:43:07Z
dc.date.available2018-07-26T16:00:57Z
dc.date.available2018-11-06T14:43:07Z
dc.date.created2018-07-26T16:00:57Z
dc.date.issued2017-11
dc.identifierBaya, Ariel Emilio; Larese, Monica Graciela; Namias, Rafael; Clustering stability for automated color image segmentation; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 86; 11-2017; 258-273
dc.identifier0957-4174
dc.identifierhttp://hdl.handle.net/11336/53165
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1889408
dc.description.abstractClustering is a well-established technique for segmentation. However, clustering validation is rarely used for this purpose. In this work we adapt a clustering validation method, Clustering Stability (CS), to automatically segment images. CS is not limited by image dimensionality nor by the clustering algorithm. We show clustering and validation acting together as a data-driven process able to find the optimum number of partitions according to our proposed color-texture feature representation. We also describe how to adapt CS to detect the best settings required for feature extraction. The segmentation solutions found by our method are supported by a stability score named STI, which provides an objective quantifiable metric to obtain the final segmentation results. Furthermore, the STI allows to compare multiple alternative solutions and select the most appropriate according to the index meaning. We successfully test our procedure on texture and natural images, and 3D MRI data.
dc.languageeng
dc.publisherPergamon-Elsevier Science Ltd
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.eswa.2017.05.064
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0957417417303937
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectCLUSTERING STABILITY
dc.subjectCLUSTERING VALIDATION
dc.subjectIMAGE SEGMENTATION
dc.titleClustering stability for automated color image segmentation
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución