dc.creatorCabrelli, Carlos
dc.creatorMosquera, Carolina Alejandra
dc.creatorPaternostro, Victoria
dc.date.accessioned2018-01-02T18:01:02Z
dc.date.accessioned2018-11-06T14:42:41Z
dc.date.available2018-01-02T18:01:02Z
dc.date.available2018-11-06T14:42:41Z
dc.date.created2018-01-02T18:01:02Z
dc.date.issued2013-12
dc.identifierPaternostro, Victoria; Mosquera, Carolina Alejandra; Cabrelli, Carlos; Linear combinations of frame generators in systems of translates; Elsevier Inc; Journal of Mathematical Analysis and Applications; 413; 2; 12-2013; 776-788
dc.identifier0022-247X
dc.identifierhttp://hdl.handle.net/11336/32001
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1889309
dc.description.abstractA finitely generated shift invariant space V is a closed subspace of L2(Rd) that can be generated by the integer translates of a finite number of functions. A set of frame generators for V is a set of functions whose integer translates form a frame for V . In this note we give necessary and sucient conditions in order that a minimal set of frame generators can be obtained by taking linear combinations of the given frame generators. Surprisingly the results are very dierent from the recently studied case when the property to be a frame is not required.
dc.languageeng
dc.publisherElsevier Inc
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jmaa.2013.12.028
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X13011074
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1305.2944
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectSHIFT INVARIANT SPACE
dc.subjectMINIMAL GENERATOR SET
dc.subjectFINITELY GENERATED SHIFT INVARIANT SPACE
dc.subjectFRAME
dc.titleLinear combinations of frame generators in systems of translates
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución