dc.creatorCernuschi Frias, Bruno
dc.creatorGama, Fernando
dc.creatorCasaglia, Daniel
dc.date.accessioned2016-01-06T15:46:20Z
dc.date.accessioned2018-11-06T14:41:29Z
dc.date.available2016-01-06T15:46:20Z
dc.date.available2018-11-06T14:41:29Z
dc.date.created2016-01-06T15:46:20Z
dc.date.issued2015-02
dc.identifierCernuschi Frias, Bruno; Gama, Fernando; Casaglia, Daniel; Analysis and Comparison of Biased Affine Estimators; Institute Of Electrical And Electronics Engineers; Ieee Transactions On Signal Processing; 63; 4; 2-2015; 859-869
dc.identifier1053-587X
dc.identifierhttp://hdl.handle.net/11336/3379
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1889075
dc.description.abstractAffine biased estimation is particularly useful when there is some a-priori knowledge on the parameters that can be exploited in adverse situations (when the number of samples is low, or the noise is high). Three different affine estimation strategies are discussed, namely the Deepest Minimum Criterion (DMC), the Min-Max (MM), and the Linear Matrix Inequality (LMI) strategies, and closed form expressions are obtained for all of them, for the case when the a priori knowledge is given in the form of ellipsoidal constraints on the parameter space, and when the covariance matrix of the unbiased estimator is constant. A relationship between affine estimation and Bayesian estimation of the mean of a multivariate Gaussian distribution with Gaussian prior is established and it is shown how affine estimation theory can help in the choice of the Gaussian prior distribution.
dc.languageeng
dc.publisherInstitute Of Electrical And Electronics Engineers
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6996046
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectLLENAR PALABRAS CLAVE
dc.subjectCARGAR PAPER
dc.titleAnalysis and Comparison of Biased Affine Estimators
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución