dc.creatorCarando, Daniel Germán
dc.creatorDefant, Andreas
dc.creatorGarcía, Domingo
dc.creatorMaestre, Manuel
dc.creatorSevilla Peris, Pablo
dc.date.accessioned2018-08-14T17:44:55Z
dc.date.accessioned2018-11-06T14:40:09Z
dc.date.available2018-08-14T17:44:55Z
dc.date.available2018-11-06T14:40:09Z
dc.date.created2018-08-14T17:44:55Z
dc.date.issued2015-06
dc.identifierCarando, Daniel Germán; Defant, Andreas; García, Domingo; Maestre, Manuel; Sevilla Peris, Pablo; The Dirichlet-Bohr radius; Polish Academy of Sciences. Institute of Mathematics; Acta Arithmetica; 171; 1; 6-2015; 23-37
dc.identifier0065-1036
dc.identifierhttp://hdl.handle.net/11336/55426
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1888831
dc.description.abstractDenote by Ω(n) the number of prime divisors of n ∈ ℕ (counted with multiplicities). For x ∈ ℕ define the Dirichlet-Bohr radius L(x) to be the best r > 0 such that for every finite Dirichlet polynomial Σn≤xann-s we have ∑n ≤ x |an| rΩ(n) ≤ supt ∈ ℝ | ∑n ≤ x ann-it|. We prove that the asymptotically correct order of L(x) is (log x)1/4x-1/8. Following Bohr's vision our proof links the estimation of L(x) with classical Bohr radii for holomorphic functions in several variables. Moreover, we suggest a general setting which allows translating various results on Bohr radii in a systematic way into results on Dirichlet-Bohr radii, and vice versa.
dc.languageeng
dc.publisherPolish Academy of Sciences. Institute of Mathematics
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.impan.pl/en/publishing-house/journals-and-series/acta-arithmetica/all/171/1/91012/the-dirichlet-bohr-radius
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4064/aa171-1-3
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectBOHR RADIUS
dc.subjectDIRICHLET SERIES
dc.subjectHOLOMORPHIC FUNCTIONS
dc.titleThe Dirichlet-Bohr radius
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución