dc.creatorBenalcazar Palacios, Marco Enrique
dc.creatorBrun, Marcel
dc.creatorBallarin, Virginia Laura
dc.date.accessioned2017-10-04T19:30:36Z
dc.date.accessioned2018-11-06T14:39:28Z
dc.date.available2017-10-04T19:30:36Z
dc.date.available2018-11-06T14:39:28Z
dc.date.created2017-10-04T19:30:36Z
dc.date.issued2013-10
dc.identifierBenalcazar Palacios, Marco Enrique; Brun, Marcel; Ballarin, Virginia Laura; Automatic Segmentation of Exudates in Ocular Images using Ensembles of Aperture Filters and Logistic Regression; IOPScience; Journal of Physics: Conference Series; 477; 1; 10-2013
dc.identifier1742-6588
dc.identifierhttp://hdl.handle.net/11336/25904
dc.identifier1742-6596
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1888697
dc.description.abstractHard and soft exudates are the main signs of diabetic macular edema (DME). The segmentation of both kinds of exudates generates valuable information not only for the diagnosis of DME, but also for treatment, which helps to avoid vision loss and blindness. In this paper, we propose a new algorithm for the automatic segmentation of exudates in ocular fundus images. The proposed algorithm is based on ensembles of aperture filters that detect exudate candidates and remove major blood vessels from the processed images. Then, logistic regression is used to classify each candidate as either exudate or non-exudate based on a vector of 31 features that characterize each potensial lesion. Finally, we tested the performance of the proposed algorithm using the images in the public HEI-MED database.
dc.languageeng
dc.publisherIOPScience
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/1742-6596/477/1/012021
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1742-6596/477/1/012021/meta
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectAperture Filters
dc.subjectLogistic Regression
dc.subjectEnsembles of Classifiers
dc.titleAutomatic Segmentation of Exudates in Ocular Images using Ensembles of Aperture Filters and Logistic Regression
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución