dc.creatorLguensat, Redouane
dc.creatorTandeo, Pierre
dc.creatorAilliot, Pierre
dc.creatorPulido, Manuel Arturo
dc.creatorFablet, Ronan
dc.date.accessioned2018-05-08T18:10:41Z
dc.date.accessioned2018-11-06T14:39:22Z
dc.date.available2018-05-08T18:10:41Z
dc.date.available2018-11-06T14:39:22Z
dc.date.created2018-05-08T18:10:41Z
dc.date.issued2017-10
dc.identifierLguensat, Redouane; Tandeo, Pierre; Ailliot, Pierre; Pulido, Manuel Arturo; Fablet, Ronan; The analog data assimilation; American Meteorological Society; Monthly Energy Review; 145; 10; 10-2017; 4093-4107
dc.identifier0027-0644
dc.identifierhttp://hdl.handle.net/11336/44461
dc.identifier1520-0493
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1888674
dc.description.abstractIn light of growing interest in data-driven methods for oceanic, atmospheric, and climate sciences, this work focuses on the field of data assimilation and presents the analog data assimilation (AnDA). The proposed framework produces a reconstruction of the system dynamics in a fully data-driven manner where no explicit knowledge of the dynamical model is required. Instead, a representative catalog of trajectories of the system is assumed to be available. Based on this catalog, the analog data assimilation combines the nonparametric sampling of the dynamics using analog forecasting methods with ensemble-based assimilation techniques. This study explores different analog forecasting strategies and derives both ensemble Kalman and particle filtering versions of the proposed analog data assimilation approach. Numerical experiments are examined for two chaotic dynamical systems: the Lorenz-63 and Lorenz-96 systems. The performance of the analog data assimilation is discussed with respect to classical model-driven assimilation. A Matlab toolbox and Python library of the AnDA are provided to help further research building upon the present findings.
dc.languageeng
dc.publisherAmerican Meteorological Society
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1175/MWR-D-16-0441.1
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://journals.ametsoc.org/doi/10.1175/MWR-D-16-0441.1
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectDATA ASSIMILATION
dc.subjectENSEMBLES
dc.subjectKALMAN FILTERS
dc.subjectSTATISTICAL FORECASTING
dc.titleThe analog data assimilation
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución