dc.creatorBarmak, Jonathan Ariel
dc.date.accessioned2017-06-26T19:57:42Z
dc.date.accessioned2018-11-06T14:37:35Z
dc.date.available2017-06-26T19:57:42Z
dc.date.available2018-11-06T14:37:35Z
dc.date.created2017-06-26T19:57:42Z
dc.date.issued2016-01
dc.identifierBarmak, Jonathan Ariel; The fixed point property in every weak homotopy type; Johns Hopkins Univ Press; American Journal Of Mathematics; 138; 5; 1-2016; 1425-1438
dc.identifier0002-9327
dc.identifierhttp://hdl.handle.net/11336/18909
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1888365
dc.description.abstractWe prove that for any connected compact CW-complex K there exists aspace X weak homotopy equivalent to K which has the fixed point property, that is,every continuous map X -> X has a fixed point. The result is known to be false if werequire X to be a polyhedron. The space X we construct is a non-Hausdorff space withfinitely many points.
dc.languageeng
dc.publisherJohns Hopkins Univ Press
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://muse.jhu.edu/article/631955/summary
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1307.1722
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectFIXED POINT PROPERTY
dc.subjectSIMPLICIAL COMPLEXES
dc.subjectWEAK HOMOTOPY TYPES
dc.subjectFINITE TOPOLOGICAL SPACES
dc.titleThe fixed point property in every weak homotopy type
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución