dc.creatorHerscovich Ramoneda, Estanislao Benito
dc.creatorSolotar, Andrea Leonor
dc.date.accessioned2017-04-06T20:45:52Z
dc.date.available2017-04-06T20:45:52Z
dc.date.created2017-04-06T20:45:52Z
dc.date.issued2011-03
dc.identifierHerscovich Ramoneda, Estanislao Benito; Solotar, Andrea Leonor; Representation theory of Yang-Mills algebras; Annal Mathematics; Annals Of Mathematics; 173; 2; 3-2011; 1043-1080
dc.identifier0003-486X
dc.identifierhttp://hdl.handle.net/11336/14931
dc.description.abstractThe aim of this article is to describe families of representations of the Yang-Mills algebras YM(n) (n∈N≥2) defined by A. Connes and M. Dubois-Violette. We first describe some irreducible finite dimensional representations. Next, we provide families of infinite dimensional representations of YM, big enough to separate points of the algebra. In order to prove this result, we prove and use that all Weyl algebras Ar(k) are epimorphic images of YM(n).
dc.languageeng
dc.publisherAnnal Mathematics
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://annals.math.princeton.edu/2011/173-2/p12
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4007/annals.2011.173.2.12
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectYang-Mills
dc.subjectOrbit Method
dc.subjectRepresentation Theory
dc.subjectHomology Theory
dc.titleRepresentation theory of Yang-Mills algebras
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución