Artículos de revistas
A volume regulatory response can be triggered by nucleosides in human erythrocytes, a perfect osmometer no longer
Fecha
2010-02Registro en:
Pafundo, Diego Esteban; Alvarez, Cora Lilia; Krumschnabel, Gerhard; Schwarzbaum, Pablo Julio; A volume regulatory response can be triggered by nucleosides in human erythrocytes, a perfect osmometer no longer; American Society for Biochemistry and Molecular Biology; Journal of Biological Chemistry; 285; 9; 2-2010; 6134-6144
0021-9258
1083-351X
CONICET Digital
CONICET
Autor
Pafundo, Diego Esteban
Alvarez, Cora Lilia
Krumschnabel, Gerhard
Schwarzbaum, Pablo Julio
Resumen
Human erythrocytes have been regarded as perfect osmometers, which swell or shrink as dictated by their osmotic environment. In contrast, in most other cells, swelling elicits a regulatory volume decrease (RVD) modulated by the activation of purinic and pyrimidinic receptors (P receptors). For human erythrocytes this modulation has not been tested, and we thus investigated whether P receptor activation can induce RVD in these cells. Further, because ectonucleotidases may scavenge ATP or ADP or act as a source for extracellular adenosine and therefore modulate P receptor activation and RVD, we also determined their activity in intact erythrocytes. We found relatively low ectoATPase but significant ectoADPase and ectoAMPase activities. When erythrocytes were exposed to hypotonic medium alone, they swelled as expected for an osmometric response and showed no RVD. Activation of P2 receptors by exogenous ATP or ADP did not trigger RVD, whereas P1 agonists adenosine and adenosine-5′-N-ethylcarboxamide induced significant RVD. The effect of adenosine-5′-N-ethylcarboxamide was dose-dependent (maximal RVD of 27%; apparent K½ of 1.6 ± 1.7 μM). The RVD induced by adenosine was blocked 80% with the non-selective P1 antagonist 8-(p-sulfophenyl theophylline) or the P1-A2B inhibitor MRS1754, but not by inhibitors of P1 subtypes A1, A2A, and A3. In addition, forskolin (an inducer of intracellular cAMP formation) could mimic the effect of adenosine, supporting the idea of P1-A2B receptor activation. In conclusion, we report a novel P1-A2B receptor-mediated RVD activation in mature human erythrocytes and thus indicate that these long held perfect osmometers are not so perfect after all.