dc.creatorGoodarzi, Mohammad
dc.creatorCoelho, Leandro dos Santos
dc.creatorHonarparvar, Bahareh
dc.creatorOrtiz, Erlinda del Valle
dc.creatorDuchowicz, Pablo Román
dc.date.accessioned2018-04-27T21:47:38Z
dc.date.available2018-04-27T21:47:38Z
dc.date.created2018-04-27T21:47:38Z
dc.date.issued2016-06
dc.identifierGoodarzi, Mohammad; Coelho, Leandro dos Santos; Honarparvar, Bahareh; Ortiz, Erlinda del Valle; Duchowicz, Pablo Román; Application of quantitative structure-property relationship analysis to estimate the vapor pressure of pesticides; Academic Press Inc Elsevier Science; Ecotoxicology and Environmental Safety; 128; 6-2016; 52-60
dc.identifier0147-6513
dc.identifierhttp://hdl.handle.net/11336/43785
dc.identifierCONICET Digital
dc.identifierCONICET
dc.description.abstractThe application of molecular descriptors in describing Quantitative Structure Property Relationships (QSPR) for the estimation of vapor pressure (VP) of pesticides is of ongoing interest. In this study, QSPR models were developed using multiple linear regression (MLR) methods to predict the vapor pressure values of 162 pesticides. Several feature selection methods, namely the replacement method (RM), genetic algorithms (GA), stepwise regression (SR) and forward selection (FS), were used to select the most relevant molecular descriptors from a pool of variables. The optimum subset of molecular descriptors was used to build a QSPR model to estimate the vapor pressures of the selected pesticides. The Replacement Method improved the predictive ability of vapor pressures and was more reliable for the feature selection of these selected pesticides. The results provided satisfactory MLR models that had a satisfactory predictive ability, and will be important for predicting vapor pressure values for compounds with unknown values. This study may open new opportunities for designing and developing new pesticide.
dc.languageeng
dc.publisherAcademic Press Inc Elsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ecoenv.2016.01.020
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0147651316300203
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectTeoría Qspr
dc.subjectPesticides
dc.subjectVapor Pressure
dc.titleApplication of quantitative structure-property relationship analysis to estimate the vapor pressure of pesticides
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución