dc.creatorCapriotti, Santiago
dc.creatorMontani, Hugo Santos
dc.date.accessioned2017-07-31T22:45:30Z
dc.date.accessioned2018-11-06T14:26:53Z
dc.date.available2017-07-31T22:45:30Z
dc.date.available2018-11-06T14:26:53Z
dc.date.created2017-07-31T22:45:30Z
dc.date.issued2014-05
dc.identifierCapriotti, Santiago; Montani, Hugo Santos; Integrable systems on semidirect product Lie groups; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 47; 206; 5-2014; 1-23
dc.identifier1751-8113
dc.identifierhttp://hdl.handle.net/11336/21691
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1886454
dc.description.abstractWe study integrable systems on the semidirect product of a Lie group and its Lie algebra as the representation space of the adjoint action. Regarding the tangent bundle of a Lie group as phase space endowed with this semidirect product Lie group structure, we construct a class of symplectic submanifolds equipped with a Dirac bracket on which integrable systems (in the Adler–Kostant–Symes sense) are naturally built through collective dynamics. In doing so, we address other issues such as factorization, Poisson–Lie structures and dressing actions. We show that the procedure becomes recursive for some particular Hamilton functions, giving rise to a tower of nested integrable systems.
dc.languageeng
dc.publisherIOP Publishing
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1751-8121/47/20/205206/
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/1751-8113/47/20/205206
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectIntegrable systems
dc.subjectAdler–Kostant–Symes method
dc.subjectSemidirect product Lie algebras
dc.titleIntegrable systems on semidirect product Lie groups
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución