dc.creatorBonomo, Flavia
dc.creatorCornaz, Deni
dc.creatorEkim, Tinaz
dc.creatorRies, Bernard
dc.date.accessioned2015-06-15T16:46:29Z
dc.date.available2015-06-15T16:46:29Z
dc.date.created2015-06-15T16:46:29Z
dc.date.issued2013-11
dc.identifierBonomo, Flavia; Cornaz, Deni; Ekim, Tinaz; Ries, Bernard; Perfectness of clustered graphs; Elsevier Science; Discrete Optimization; 10; 4; 11-2013; 296-303
dc.identifier1572-5286
dc.identifierhttp://hdl.handle.net/11336/737
dc.description.abstractGiven a clustered graph (G,V), that is, a graph G=(V,E) together with a partition V of its vertex set, the selective coloring problem consists in choosing one vertex per cluster such that the chromatic number of the subgraph induced by the chosen vertices is minimum. This problem can be formulated as a covering problem with a 0–1 matrix M(G,V). Nevertheless, we observe that, given (G,V), it is NP-hard to check if M(G,V) is conformal (resp. perfect). We will give a sufficient condition, checkable in polynomial time, for M(G,V) to be conformal that becomes also necessary if conformality is required to be hereditary. Finally, we show that M(G,V) is perfect for every partition V if and only if G belongs to a superclass of threshold graphs defined with a complex function instead of a real one.
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1572528613000443
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.disopt.2013.07.006
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourceCiteSeerX
dc.subjectCONFORMAL MATRIX
dc.subjectPARTITION COLORING
dc.subjectPERFECT MATRIX
dc.subjectSELECTIVE COLORING
dc.subjectTHRESHOLD GRAPH
dc.titlePerfectness of clustered graphs
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución