Artículos de revistas
Evaluation of biological pretreatments to increase the efficiency of the saccharification process using Spartina argentinensis as a biomass resource
Fecha
2015-10Registro en:
Larran, Alvaro Santiago; Jozami, Emiliano; Vicario, Lionel; Feldman, Susana Raquel; Podesta, Florencio Esteban; et al.; Evaluation of biological pretreatments to increase the efficiency of the saccharification process using Spartina argentinensis as a biomass resource; Elsevier; Bioresource Technology; 194; 10-2015; 320-325
0960-8524
CONICET Digital
CONICET
Autor
Larran, Alvaro Santiago
Jozami, Emiliano
Vicario, Lionel
Feldman, Susana Raquel
Podesta, Florencio Esteban
Permingeat, Hugo Raúl
Resumen
Second generation bioethanol obtained from native perennial grasses offers a promising alternative for biofuel production, avoiding land use competition for crops production. Spartina argentinensis is a native perennial C4 grass with high photosynthetic rates, well adapted to halo-hydromorphic soils, though its forage quality (palatability and digestibility) for livestock is quite low due to its high lignin content. Hence, cattle raisers burn these grasslands frequently in order to stimulate the emergence of new leaves with higher digestibility for cattle feeding. Lignin is the main barrier to overcome in order to efficiently hydrolyze the cellulose for bioethanol production. In this work, we evaluate different pretreatments (phosphoric acid, ligninolytic enzymes and fungal supernatants) aimed to remove lignin and improving cellulose hydrolysis efficiency. Results show that pretreatment with Pycnoporus sanguineus supernatant improves fermentable carbohydrates availability, compared with a conventional chemical pretreatment, and that 56.84% of cellulose can be hydrolyzed using this pretreatment.