Artículos de revistas
Oligodendrocyte differentiation and signaling after transferrin internalization: a mechanism of action
Fecha
2013-10Registro en:
Perez, Maria Julia; Fernandez, Natalia Cristina; Pasquini, Juana Maria; Oligodendrocyte differentiation and signaling after transferrin internalization: a mechanism of action; Elsevier; Experimental Neurology; 248; 10-2013; 262-274
0014-4886
Autor
Perez, Maria Julia
Fernandez, Natalia Cristina
Pasquini, Juana Maria
Resumen
Oligodendrocytes are the cells producing the myelin membrane around the axons in the central nervous system and, although apotransferrin (aTf) is required for oligodendrocyte differentiation, the underlying mechanisms are not fully understood. Fyn tyrosine kinase, a member of the Src family of proteins, has been shown to play an important role in myelination by up-regulating the expression of myelin basic protein; however, a molecular link between aTf and Fyn kinase signaling pathway during oligodendrocytes differentiation has not been established yet. Our aim was to investigate whether Fyn kinase, MEK/ERK and PI3K/Akt signaling pathways are required for aTf-stimulation of oligodendrocyte differentiation and also to determine if the transferrin receptor is involved in these mechanisms. Treatment of primary cultures of oligodendroglial precursor cells with aTf leads to Fyn kinase activation by a mechanism that involves transferrin receptor. In turn, Fyn kinase activation promotes MEK-mediated transient phosphorylation of ERK1/2. On the other hand, transferrin receptor internalization also produces rapid and sustained activation of Akt, which involves phosphatidylinositol 3-kinase (PI3K) activation. Finally, aTf incorporated through clathrin-mediated endocytosis increases myelin basic protein, F3-contactin and β-tubulin through Fyn/MEK/ERK pathways, as well as an activation of the PI3K/Akt pathway. Our results also demonstrate that the activation of the pathways necessary for oligodendroglial precursor cell maturation is dependent on AP2 recruitment onto the plasma membrane for clathrin-mediated endocytosis of transferrin receptor.