dc.creatorMinian, Elias Gabriel
dc.creatorRodríguez, Jorge Tomás
dc.date.accessioned2017-06-23T17:10:16Z
dc.date.accessioned2018-11-06T14:16:15Z
dc.date.available2017-06-23T17:10:16Z
dc.date.available2018-11-06T14:16:15Z
dc.date.created2017-06-23T17:10:16Z
dc.date.issued2014-07
dc.identifierMinian, Elias Gabriel; Rodríguez, Jorge Tomás; A note on the homotopy type of the Alexander dual; Springer; Discrete And Computational Geometry; 52; 1; 7-2014; 34-43
dc.identifier0179-5376
dc.identifierhttp://hdl.handle.net/11336/18736
dc.identifier1432-0444
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1884610
dc.description.abstractWe investigate the homotopy type of the Alexander dual of a simplicial complex. It is known that in general the homotopy type of K does not determine the homotopy type of its dual K∗ . We construct for each finitely presented group G, a simply connected simplicial complex K such that π1(K∗ ) = G and study sufficient conditions on K for K∗ to have the homotopy type of a sphere. We extend the simplicial Alexander duality to the more general context of reduced lattices and relate this construction with Bier spheres using deleted joins of lattices. Finally we introduce an alternative dual, in the context of reduced lattices, with the same homotopy type as the Alexander dual but smaller and simpler to compute.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00454-014-9606-5
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00454-014-9606-5
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1206.3368
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectDualidad alexander
dc.subjectComplejos simpliciales
dc.subjectHomologia
dc.subjectLattice
dc.titleA note on the homotopy type of the Alexander dual
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución