dc.creatorMaya, Juan Augusto
dc.creatorRey Vega, Leonardo Javier
dc.creatorGalarza, Cecilia Gabriela
dc.date.accessioned2018-09-11T19:00:33Z
dc.date.accessioned2018-11-06T14:12:43Z
dc.date.available2018-09-11T19:00:33Z
dc.date.available2018-11-06T14:12:43Z
dc.date.created2018-09-11T19:00:33Z
dc.date.issued2017-01
dc.identifierMaya, Juan Augusto; Rey Vega, Leonardo Javier; Galarza, Cecilia Gabriela; A Closed-Form Approximation for the CDF of the Sum of Independent Random Variables; Institute of Electrical and Electronics Engineers; Ieee Signal Processing Letters; 24; 1; 1-2017; 121-125
dc.identifier1070-9908
dc.identifierhttp://hdl.handle.net/11336/59152
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1883948
dc.description.abstractIn this letter, we use the Berry-Esseen theorem and the method of tilted distributions to derive a simple tight closed-form approximation for the tail probabilities of a sum of independent but not necessarily identically distributed random variables. We also provide lower and upper bounds. The expression can also be used for computing the cumulative distribution function. We illustrate the accuracy of the method by analyzing some convergence properties of the theoretical approximation and comparing it with previous results in the literature when available and/or numerical results.
dc.languageeng
dc.publisherInstitute of Electrical and Electronics Engineers
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/7792589/
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/LSP.2016.2643281
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectCUMULATIVE DISTRIBUTION FUNCTION (CDF) APPROXIMATION
dc.subjectQUADRATIC GAUSSIAN FORM DISTRIBUTION
dc.subjectTAIL PROBABILITY APPROXIMATION
dc.titleA Closed-Form Approximation for the CDF of the Sum of Independent Random Variables
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución