dc.creatorAndruchow, Esteban
dc.creatorChiumiento, Eduardo Hernan
dc.creatorDi Iorio y Lucero, María Eugenia
dc.date.accessioned2017-04-07T14:47:00Z
dc.date.accessioned2018-11-06T14:09:40Z
dc.date.available2017-04-07T14:47:00Z
dc.date.available2018-11-06T14:09:40Z
dc.date.created2017-04-07T14:47:00Z
dc.date.issued2015-01-15
dc.identifierAndruchow, Esteban; Chiumiento, Eduardo Hernan; Di Iorio y Lucero, María Eugenia; Essentially commuting projections; Elsevier; Journal Of Functional Analysis; 268; 2; 15-1-2015; 336-362
dc.identifier0022-1236
dc.identifierhttp://hdl.handle.net/11336/14948
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1883445
dc.description.abstractLet H = H+ ⊕ H− be a fixed orthogonal decomposition of a Hilbert space, with both subspaces of infinite dimension, and let E+, E− be the projections onto H+ and H−. We study the set Pcc of orthogonal projections P in H which essentially commute with E+, (or equivalently with E−), i.e. [P, E+] = P E+ − E+P is compact. By means of the projection π onto the Calkin algebra, one sees that these projections P ∈ Pcc fall into nine classes. Four discrete classes, which correspond to π(P) being 0, 1, π(E+) or π(E−), and five essential classes which we describe below. The discrete classes are, respectively, the finite rank projections, finite co-rank projections, the Sato Grassmannian of H+ and the Sato Grassmannian of H−. Thus the connected components of each of these classes are parametrized by the integers (via de rank, the co-rank or the Fredholm index, respectively). The essential classes are shown to be connected. We are interested in the geometric structure of Pcc, being the set of selfadjoint projections of the C∗ -algebra Bcc of operators in B(H) which essentially commute with E+. In particular, we study the problem of existence of minimal geodesics joining two given projections in the same component. We show that the Hopf-Rinow Theorem holds in the discrete classes, but not in the essential classes. Conditions for the existence and uniqueness of geodesics in these latter classes are found.
dc.languageeng
dc.publisherElsevier
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022123614004169
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jfa.2014.10.003
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectPROJECTIONS
dc.subjectCOMPACT OPERATORS
dc.subjectFREDHOLM INDEX
dc.subjectGEODESICS
dc.titleEssentially commuting projections
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución