Artículos de revistas
Algebraic functions in Łukasiewicz implication algebras
Fecha
2016-03Registro en:
Campercholi, Miguel Alejandro Carlos; Castaño, Diego Nicolás; Díaz Varela, José Patricio; Algebraic functions in Łukasiewicz implication algebras; World Scientific; International Journal of Algebra and Computation; 26; 2; 3-2016; 223-247
0218-1967
CONICET Digital
CONICET
Autor
Campercholi, Miguel Alejandro Carlos
Castaño, Diego Nicolás
Díaz Varela, José Patricio
Resumen
In this article we study algebraic functions in {→, 1}-subreducts of MV-algebras, also known as Łukasiewicz implication algebras. A function is algebraic on an algebra A if it is definable by a conjunction of equations on A. We fully characterize algebraic functions on every Łukasiewicz implication algebra belonging to a finitely generated variety. The main tool to accomplish this is a factorization result describing algebraic functions in a subproduct in terms of the algebraic functions of the factors. We prove a global representation theorem for finite Łukasiewicz implication algebras which extends a similar one already known for Tarski algebras. This result together with the knowledge of algebraic functions allowed us to give a partial description of the lattice of classes axiomatized by sentences of the form ∀∃!∧ p ≈ q within the variety generated by the 3-element chain.
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Identidades graduadas em álgebras não-associativas
Silva, Diogo Diniz Pereira da Silva e -
Estructura de álgebra de Poisson de la cohomología de ciertas álgebras de Lie nilpotentes
Gutierrez, Gonzalo Emanuel Matías (2022-07-29)Si g es un álgebra de Lie, la cohomología H**(g) tiene una estructura de súper-álgebra de Poisson con producto asociativo súper-conmutativo V y un súper-corchete de Lie {-,-} que se compatibiliza con el producto \vee en ... -
Introdução elementar às álgebras Clifford 'CL IND.2' 'CL IND. 3'
Resende, Adriana Souza