dc.creatorColombo, Leonardo Jesus
dc.creatorFerraro, Sebastián José
dc.creatorMartin de Diego, David
dc.date.accessioned2018-06-15T13:28:21Z
dc.date.accessioned2018-11-06T14:08:20Z
dc.date.available2018-06-15T13:28:21Z
dc.date.available2018-11-06T14:08:20Z
dc.date.created2018-06-15T13:28:21Z
dc.date.issued2016-12-01
dc.identifierColombo, Leonardo Jesus; Ferraro, Sebastián José; Martin de Diego, David; Geometric Integrators for Higher-Order Variational Systems and Their Application to Optimal Control; Springer; Journal Of Nonlinear Science; 26; 6; 1-12-2016; 1615-1650
dc.identifier0938-8974
dc.identifierhttp://hdl.handle.net/11336/48751
dc.identifier1432-1467
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1883224
dc.description.abstractNumerical methods that preserve geometric invariants of the system, such as energy, momentum or the symplectic form, are called geometric integrators. In this paper we present a method to construct symplectic-momentum integrators for higher-order Lagrangian systems. Given a regular higher-order Lagrangian L: T( k )Q→ R with k≥ 1 , the resulting discrete equations define a generally implicit numerical integrator algorithm on T( k - 1 )Q× T( k - 1 )Q that approximates the flow of the higher-order Euler–Lagrange equations for L. The algorithm equations are called higher-order discrete Euler–Lagrange equations and constitute a variational integrator for higher-order mechanical systems. The general idea for those variational integrators is to directly discretize Hamilton’s principle rather than the equations of motion in a way that preserves the invariants of the original system, notably the symplectic form and, via a discrete version of Noether’s theorem, the momentum map. We construct an exact discrete Lagrangian Lde using the locally unique solution of the higher-order Euler–Lagrange equations for L with boundary conditions. By taking the discrete Lagrangian as an approximation of Lde, we obtain variational integrators for higher-order mechanical systems. We apply our techniques to optimal control problems since, given a cost function, the optimal control problem is understood as a second-order variational problem.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00332-016-9314-9
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00332-016-9314-9
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1410.5766
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectDISCRETE VARIATIONAL CALCULUS
dc.subjectHIGHER-ORDER MECHANICS
dc.subjectOPTIMAL CONTROL
dc.subjectVARIATIONAL INTEGRATORS
dc.titleGeometric Integrators for Higher-Order Variational Systems and Their Application to Optimal Control
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución