dc.creatorGrinblat, Guillermo Luis
dc.creatorUzal, Lucas César
dc.creatorGranitto, Pablo Miguel
dc.date.accessioned2015-12-23T14:55:46Z
dc.date.accessioned2018-11-06T14:05:01Z
dc.date.available2015-12-23T14:55:46Z
dc.date.available2018-11-06T14:05:01Z
dc.date.created2015-12-23T14:55:46Z
dc.date.issued2013-12-15
dc.identifierGrinblat, Guillermo Luis; Uzal, Lucas César; Granitto, Pablo Miguel; Abrupt change detection with One-Class Time-Adaptive Support Vector Machines; Elsevier; Expert Systems with Applications; 40; 18; 15-12-2013; 7242-7249
dc.identifier0957-4174
dc.identifierhttp://hdl.handle.net/11336/3196
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1882717
dc.description.abstractWe recently introduced an algorithm for training a sequence of coupled Support Vector Machines which shows promising results in the field of non-stationary classification problems Grinblat, Uzal, Ceccatto, and Granitto (2011). In this paper we analyze its application to the abrupt change detection problem. With this goal, we first introduce and analyze an extension of it to deal with the One-Class Support Vector Machine (OC-SVM) problem, and then discuss its use as an improved abrupt change detection method. Finally, we apply the proposed procedure to artificial and real-world examples, and demonstrate that it is competitive by comparison against other abrupt change detection methods.
dc.languageeng
dc.publisherElsevier
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.eswa.2013.06.074
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0957417413004739
dc.relationinfo:eu-repo/semantics/altIdentifier/issn/0957-4174
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rights2016-01-31
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.subjectABRUPT CHANGE DETECTION
dc.subjectONE CLASS CLASSIFICATION
dc.subjectSUPPORT VECTOR MACHINE
dc.titleAbrupt change detection with One-Class Time-Adaptive Support Vector Machines
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución