dc.creatorDi Scala, Antonio J.
dc.creatorVittone, Francisco
dc.date.accessioned2018-07-26T15:09:57Z
dc.date.accessioned2018-11-06T14:04:46Z
dc.date.available2018-07-26T15:09:57Z
dc.date.available2018-11-06T14:04:46Z
dc.date.created2018-07-26T15:09:57Z
dc.date.issued2017-02
dc.identifierDi Scala, Antonio J.; Vittone, Francisco; Mok's characteristic varieties and the normal holonomy group; Academic Press Inc Elsevier Science; Advances in Mathematics; 308; 2-2017; 987-1008
dc.identifier0001-8708
dc.identifierhttp://hdl.handle.net/11336/53158
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1882663
dc.description.abstractIn this paper we complete the study of the normal holonomy groups of complex submanifolds (non nec. complete) of Cn or CPn. We show that irreducible but non-transitive normal holonomies are exactly the Hermitian s-representations of [4, Table 1] (see Corollary 1.1). For each one of them we construct a non necessarily complete complex submanifold whose normal holonomy is the prescribed s-representation. We also show that if the submanifold has irreducible non-transitive normal holonomy then it is an open subset of the smooth part of one of the characteristic varieties studied by N. Mok in his work about rigidity of locally symmetric spaces. Finally, we prove that if the action of the normal holonomy group of a projective submanifold is reducible then the submanifold is an open subset of the smooth part of a so called join, i.e. the union of the lines joining two projective submanifolds.
dc.languageeng
dc.publisherAcademic Press Inc Elsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.aim.2016.12.022
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001870816317509
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectMINIMAL TRIPOTENT
dc.subjectMOK'S CHARACTERISTIC
dc.subjectNORMAL HOLONOMY GROUP
dc.subjectPOSITIVE JORDAN TRIPLE SYSTEM
dc.subjectSYMMETRIC DOMAIN
dc.titleMok's characteristic varieties and the normal holonomy group
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución