dc.creatorNosir, M. A.
dc.creatorMartin Gondre, L.
dc.creatorBocan, Gisela Anahí
dc.creatorDíez Muiño, R.
dc.date.accessioned2018-09-17T13:51:23Z
dc.date.accessioned2018-11-06T14:03:48Z
dc.date.available2018-09-17T13:51:23Z
dc.date.available2018-11-06T14:03:48Z
dc.date.created2018-09-17T13:51:23Z
dc.date.issued2016-09
dc.identifierNosir, M. A.; Martin Gondre, L.; Bocan, Gisela Anahí; Díez Muiño, R.; Density functional theory study of nitrogen atoms and molecules interacting with Fe(1 1 1) surfaces; Elsevier Science; Beam Interactions with Materials and Atoms; 382; 9-2016; 105-109
dc.identifier0168-583X
dc.identifierhttp://hdl.handle.net/11336/59839
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1882435
dc.description.abstractWe present Density functional theory (DFT) calculations for the investigation of the structural relaxation of Fe(1 1 1), as well as for the study of the interaction of nitrogen atoms and molecules with this surface. We perform spin polarized DFT calculations using VASP (Vienna Ab-initio Simulation Package) code. We use the supercell approach and up to 19 slab layers for the relaxation of the Fe(1 1 1) surface. We find a contraction of the first two interlayer distances with a relative value of Δ12=-7.8% and Δ23=-21.7% with respect to the bulk reference. The third interlayer distance is however expanded with a relative change of Δ34=9.7%. Early experimental studies of the surface relaxation using Low Energy Electron Diffraction (LEED) and Medium Energy Ion Scattering (MEIS) showed contradictory results, even on the relaxation general trend. Our current theoretical results support the LEED conclusions and are consistent qualitatively with other recent theoretical calculations. In addition, we study the interaction energy of nitrogen atoms and molecules on the Fe(1 1 1) surface. The nitrogen atoms are adsorbed in the hollow site of the unit cell, with an adsorption energy consistent with the one found in previous studies. In addition, we find the three molecularly adsorbed states that are observed experimentally. Two of them correspond to the adsorbed molecule oriented normal to the surface and a third one corresponds to the molecule adsorbed parallel to the surface. We conclude that our results are accurate enough to be used to build a full six-dimensional potential energy surface for the N2 system.
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.nimb.2016.03.002
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0168583X1600207X
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectADSORPTION ENERGY
dc.subjectDENSITY FUNCTIONAL THEORY
dc.subjectDIFFUSION
dc.subjectHETEROGENEOUS CATALYSIS
dc.subjectIRON SURFACE
dc.subjectNITROGEN
dc.subjectSURFACE RELAXATION
dc.titleDensity functional theory study of nitrogen atoms and molecules interacting with Fe(1 1 1) surfaces
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución