Artículos de revistas
Automatic detection of learning styles: state of the art
Fecha
2015-08Registro en:
Feldman, Juan; Monteserin, Ariel José; Amandi, Analia Adriana; Automatic detection of learning styles: state of the art; Springer; Artificial Intelligence Review; 44; 2; 8-2015; 157-186
0269-2821
Autor
Feldman, Juan
Monteserin, Ariel José
Amandi, Analia Adriana
Resumen
A learning style describes the attitudes and behaviors, which determine an individual´s preferred way of learning. Learning styles are particularly important in educational settings since they may help students and tutors become more self-aware of their strengths and weaknesses as learners. The traditional way to identify learning styles is using a test or questionnaire. Despite being reliable, these instruments present some problems that hinder the learning style identification. Some of these problems include students´ lack of motivation to fill out a questionnaire and lack of self-awareness of their learning preferences. Thus, over the last years, several approaches have been proposed for automatically detecting learning styles, which aim to solve these problems. In this work, we review and analyze current trends in the field of automatic detection of learning styles. We present the results of our analysis and discuss some limitations, implications and research gaps that can be helpful to researchers working in the field of learning styles.