dc.creatorDickenstein, Alicia Marcela
dc.creatorMatusevich, Laura Felicia
dc.creatorMiller, Ezra
dc.date.accessioned2017-04-10T17:59:08Z
dc.date.accessioned2018-11-06T14:00:40Z
dc.date.available2017-04-10T17:59:08Z
dc.date.available2018-11-06T14:00:40Z
dc.date.created2017-04-10T17:59:08Z
dc.date.issued2010-04
dc.identifierDickenstein, Alicia Marcela; Matusevich, Laura Felicia; Miller, Ezra; Combinatorics of binomial primary decomposition; Springer; Mathematische Zeitschrift; 264; 4; 4-2010; 745-763
dc.identifier0025-5874
dc.identifierhttp://hdl.handle.net/11336/15068
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1881739
dc.description.abstractAn explicit lattice point realization is provided for the primary components of an arbitrary binomial ideal in characteristic zero. This decomposition is derived from a characteristic-free combinatorial description of certain primary components of binomial ideals in affine semigroup rings, namely those that are associated to faces of the semigroup. These results are intimately connected to hypergeometric differential equations in several variables.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00209-009-0487-x
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00209-009-0487-x
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectBinomials
dc.subjectPrimary decomposition
dc.subjectAffine semigroup ring
dc.subjectCombinatorics
dc.titleCombinatorics of binomial primary decomposition
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución