dc.creatorDickenstein, Alicia Marcela
dc.creatorHerrero, Maria Isabel
dc.creatorTabera, Luis Felipe
dc.date.accessioned2018-08-14T21:17:57Z
dc.date.accessioned2018-11-06T14:00:27Z
dc.date.available2018-08-14T21:17:57Z
dc.date.available2018-11-06T14:00:27Z
dc.date.created2018-08-14T21:17:57Z
dc.date.issued2017-09
dc.identifierDickenstein, Alicia Marcela; Herrero, Maria Isabel; Tabera, Luis Felipe; Arithmetics and combinatorics of tropical Severi varieties of univariate polynomials; Hebrew Univ Magnes Press; Israel Journal Of Mathematics; 221; 2; 9-2017; 741-777
dc.identifier0021-2172
dc.identifierhttp://hdl.handle.net/11336/55513
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1881707
dc.description.abstractWe give a description of the tropical Severi variety of univariate polynomials of degree n having two double roots. We show that, as a set, it is given as the union of three explicit types of cones of maximal dimension n − 1, where only cones of two of these types are cones of the secondary fan of {0,.., n}. Through Kapranov’s theorem, this goal is achieved by a careful study of the possible valuations of the elementary symmetric functions of the roots of a polynomial with two double roots. Despite its apparent simplicity, the computation of the tropical Severi variety has both combinatorial and arithmetic ingredients.
dc.languageeng
dc.publisherHebrew Univ Magnes Press
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11856-017-1573-0
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11856-017-1573-0
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectGEOMETRIA TROPICAL
dc.subjectVARIEDADES DE SEVERI
dc.subjectSINGULAR VARIETIES
dc.titleArithmetics and combinatorics of tropical Severi varieties of univariate polynomials
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución