dc.creatorBali, Juan Lucas
dc.creatorBoente Boente, Graciela Lina
dc.date.accessioned2017-06-26T20:43:18Z
dc.date.accessioned2018-11-06T13:59:25Z
dc.date.available2017-06-26T20:43:18Z
dc.date.available2018-11-06T13:59:25Z
dc.date.created2017-06-26T20:43:18Z
dc.date.issued2015-01
dc.identifierBali, Juan Lucas; Boente Boente, Graciela Lina; Influence function of projection-pursuit principal components for functional data; Elsevier Inc; Journal Of Multivariate Analysis; 133; 1-2015; 173-199
dc.identifier0047-259X
dc.identifierhttp://hdl.handle.net/11336/18939
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1881504
dc.description.abstractIn the finite-dimensional setting, Li and Chen (1985) proposed a method for principal components analysis using projection-pursuit techniques. This procedure was generalized to the functional setting by Bali et al. (2011), where also different penalized estimators were defined to provide smooth functional robust principal component estimators. This paper completes their study by deriving the influence function of the functional related to the principal direction estimators and their size. As is well known, the influence function is a measure of robustness which can also be used for diagnostic purposes. In this sense, the obtained results can be helpful for detecting influential observations for the principal directions.
dc.languageeng
dc.publisherElsevier Inc
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jmva.2014.09.004
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0047259X14002012
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectElliptical distribution
dc.subjectFisher-consistency
dc.subjectFunctional principal component
dc.subjectInfluence function
dc.subjectRobust estimation
dc.subjectSmoothing
dc.titleInfluence function of projection-pursuit principal components for functional data
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución