Artículos de revistas
Magnetic and Conducting Properties of Composites of Conducting Polymers and Ferrite Nanoparticles
Fecha
2013-07-23Registro en:
Muñoz Resta, Ignacio; Horwitz, Gabriela; Lanús Mendez Elizalde, Matías; Jorge, Guillermo Antonio; Molina, Fernando Víctor; et al.; Magnetic and Conducting Properties of Composites of Conducting Polymers and Ferrite Nanoparticles; Institute Of Electrical And Electronics Engineers; Ieee Transactions On Magnetics; 49; 8; 23-7-2013; 4598-4601
0018-9464
Autor
Muñoz Resta, Ignacio
Horwitz, Gabriela
Lanús Mendez Elizalde, Matías
Jorge, Guillermo Antonio
Molina, Fernando Víctor
Antonel, Paula Soledad
Resumen
Composites of ferromagnetic nanoparticles and two conducting polymers (polyethylenedioxythiophene-PEDOT- and polypyrrole-Ppy-) were prepared and characterized. Both syntheses were performed by monomer polymerization in presence of a dispersion of the magnetic nanoparticles, at different monomer: molar ratios. For PPy-composites, both the coercive field and the applied field required to reach the maximum magnetization decrease as the polymer content increases. For PEDOT-composites, the remanence ratio increases as the polymer content increases, indicating the presence of interactions related to the amount of polymer present. Electrical conductivity measurements indicate that, for both types of composites, a high polymer content gives rise to high electrical conductivity. These results indicate that the composite properties can be modulated by varying the polymer identity and the monomer: CoFe2O4 molar ratio.