dc.creatorNegri, Pablo Augusto
dc.date.accessioned2018-02-06T19:40:26Z
dc.date.available2018-02-06T19:40:26Z
dc.date.created2018-02-06T19:40:26Z
dc.date.issued2014-07
dc.identifierNegri, Pablo Augusto; Estimating the queue length at street intersections by using a movement feature space approach; Institution of Engineering and Technology; Iet Image Processing; 8; 7; 7-2014; 406-416
dc.identifier1751-9659
dc.identifierhttp://hdl.handle.net/11336/35865
dc.identifier1751-9667
dc.identifierCONICET Digital
dc.identifierCONICET
dc.description.abstractThis study aims to estimate the traffic load at street intersections obtaining the circulating vehicle number through image processing and pattern recognition. The algorithm detects moving objects in a street view by using level lines and generates a new feature space called movement feature space (MFS). The MFS generates primitives as segments and corners to match vehicle model generating hypotheses. The MFS is also grouped in a histogram configuration called histograms of oriented level lines (HO2 L). This work uses HO2 L features to validate vehicle hypotheses comparing the performance of different classifiers: linear support vector machine (SVM), non-linear SVM, neural networks and boosting. On average, successful detection rate is of 86% with 10-1 false positives per image for highly occluded images.
dc.languageeng
dc.publisherInstitution of Engineering and Technology
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1049/iet-ipr.2013.0496
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://digital-library.theiet.org/content/journals/10.1049/iet-ipr.2013.0496
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectVehicle Detection
dc.subjectMovement Feature Space
dc.subjectHistogram of Oriented Level Lines
dc.titleEstimating the queue length at street intersections by using a movement feature space approach
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución