dc.creator | Larotonda, Gabriel Andrés | |
dc.date.accessioned | 2017-06-26T21:24:28Z | |
dc.date.accessioned | 2018-11-06T13:54:28Z | |
dc.date.available | 2017-06-26T21:24:28Z | |
dc.date.available | 2018-11-06T13:54:28Z | |
dc.date.created | 2017-06-26T21:24:28Z | |
dc.date.issued | 2016-05 | |
dc.identifier | Larotonda, Gabriel Andrés; Young's (in)equality for compact operators; Polish Acad Sciences Inst Mathematics; Studia Mathematica; 233; 2; 5-2016; 169-181 | |
dc.identifier | 0039-3223 | |
dc.identifier | http://hdl.handle.net/11336/18948 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1880568 | |
dc.description.abstract | If a, b are n × n matrices, T. Ando proved that Young’s inequality is valid for their singular values: if p > 1 and 1/p + 1/q = 1, then λk(|ab∗ |) ≤ λk 1 p |a| p + 1 q |b| q for all k. Later, this result was extended for the singular values of a pair of compact operators acting on a Hilbert space by J. Erlijman, D. Farenick and R. Zeng. In this paper we prove that if a, b are compact operators, then equality holds in Young’s inequality if and only if |a| p = |b| q . | |
dc.language | eng | |
dc.publisher | Polish Acad Sciences Inst Mathematics | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.subject | YOUNG INEQUALITY | |
dc.subject | COMPACT OPERATOR | |
dc.subject | SINGULAR VALUE | |
dc.subject | SPECTRUM | |
dc.title | Young's (in)equality for compact operators | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |
dc.type | Artículos de revistas | |