dc.creatorLarotonda, Gabriel Andrés
dc.date.accessioned2017-06-26T21:24:28Z
dc.date.accessioned2018-11-06T13:54:28Z
dc.date.available2017-06-26T21:24:28Z
dc.date.available2018-11-06T13:54:28Z
dc.date.created2017-06-26T21:24:28Z
dc.date.issued2016-05
dc.identifierLarotonda, Gabriel Andrés; Young's (in)equality for compact operators; Polish Acad Sciences Inst Mathematics; Studia Mathematica; 233; 2; 5-2016; 169-181
dc.identifier0039-3223
dc.identifierhttp://hdl.handle.net/11336/18948
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1880568
dc.description.abstractIf a, b are n × n matrices, T. Ando proved that Young’s inequality is valid for their singular values: if p > 1 and 1/p + 1/q = 1, then λk(|ab∗ |) ≤ λk 1 p |a| p + 1 q |b| q for all k. Later, this result was extended for the singular values of a pair of compact operators acting on a Hilbert space by J. Erlijman, D. Farenick and R. Zeng. In this paper we prove that if a, b are compact operators, then equality holds in Young’s inequality if and only if |a| p = |b| q .
dc.languageeng
dc.publisherPolish Acad Sciences Inst Mathematics
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectYOUNG INEQUALITY
dc.subjectCOMPACT OPERATOR
dc.subjectSINGULAR VALUE
dc.subjectSPECTRUM
dc.titleYoung's (in)equality for compact operators
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución