dc.creatorValdemoro, C.
dc.creatorAlcoba, Diego Ricardo
dc.creatorTel, L. M.
dc.creatorPérez Romero, E.
dc.date.accessioned2018-08-24T15:33:54Z
dc.date.accessioned2018-11-06T13:49:57Z
dc.date.available2018-08-24T15:33:54Z
dc.date.available2018-11-06T13:49:57Z
dc.date.created2018-08-24T15:33:54Z
dc.date.issued2011-02
dc.identifierValdemoro, C.; Alcoba, Diego Ricardo; Tel, L. M.; Pérez Romero, E.; Some theoretical questions about the G-particle-hole hypervirial equation; John Wiley & Sons Inc; International Journal of Quantum Chemistry; 111; 2; 2-2011; 245-255
dc.identifier0020-7608
dc.identifierhttp://hdl.handle.net/11336/56959
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1879924
dc.description.abstractBy applying a matrix contracting mapping, involving the G-particle-hole operator, to the matrix representation of the N-electron density hypervirial equation, one obtains the G-particle-hole hypervirial (GHV) equation (Alcoba, et al., Int J Quant Chem 2009, 109, 3178). This equation may be solved by exploiting the stationary property of the hypervirials (Hirschfelder, J Chem Phys 1960, 33, 1462; Fernández and Castro, Hypervirial Theorems., Lecture Notes in Chemistry Series 43, 1987) and by following the general lines of Mazziotti's approach for solving the anti-Hermitian contracted Schrödinger equation (Mazziotti, Phys Rev Lett 2006, 97, 143002), which can be identified with the second-order density hypervirial equation. The accuracy of the results obtained with this method when studying the ground-state of a set of atoms and molecules was excellent when compared with the equivalent full configuration interaction (FCI) quantities. Here, we analyze two open questions: under what conditions the solution of the GHV equation corresponds to a Hamiltonian eigenstate, and the possibility of extending the field of application of this methodology to the study of excited and multiconfigurational states. A brief account of the main difficulties that arise when studying this type of states is described. © 2010 Wiley Periodicals, Inc.
dc.languageeng
dc.publisherJohn Wiley & Sons Inc
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1002/qua.22678
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.22678
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectCONTRACTED SCHRÖDINGER EQUATION
dc.subjectCORRELATION MATRIX
dc.subjectELECTRONIC CORRELATION EFFECTS
dc.subjectG-PARTICLE-HOLE MATRIX
dc.subjectREDUCED DENSITY MATRIX
dc.titleSome theoretical questions about the G-particle-hole hypervirial equation
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución