dc.creatorSuarez, Fernando Daniel
dc.date.accessioned2017-06-26T21:42:58Z
dc.date.accessioned2018-11-06T13:48:27Z
dc.date.available2017-06-26T21:42:58Z
dc.date.available2018-11-06T13:48:27Z
dc.date.created2017-06-26T21:42:58Z
dc.date.issued2015-08
dc.identifierSuarez, Fernando Daniel; A generalization of Toeplitz operators on the Bergman space; Theta Foundation; Journal Of Operator Theory; 73; 2; 8-2015; 315-332
dc.identifier0379-4024
dc.identifierhttp://hdl.handle.net/11336/18960
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1879633
dc.description.abstractIf μ μ is a finite measure on the unit disc and k ⩾ 0 k⩾0 is an integer, we study a generalization derived from Engli\v{s}'s work, T ( k ) μ Tμ(k), of the traditional Toeplitz operators on the Bergman space \berg \berg, which are the case k = 0 k=0. Among other things, we prove that when μ ⩾ 0 μ⩾0, these operators are bounded if and only if μ μ is a Carleson measure, they are compact if and only if μ μ is a vanishing Carleson measure, and we obtain some estimates for their norms. Also, we use these operators to characterize the closure of the image of the Berezin transform applied to the whole operator algebra.
dc.languageeng
dc.publisherTheta Foundation
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.7900/jot.2013nov28.2023
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.mathjournals.org/jot/2015-073-002/2015-073-002-002.html
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectBergman space
dc.subjectToeplitz operators
dc.subjectBerezin transform
dc.titleA generalization of Toeplitz operators on the Bergman space
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución