dc.creatorBenalcazar Palacios, Marco Enrique
dc.creatorBrun, Marcel
dc.creatorBallarin, Virginia Laura
dc.date.accessioned2018-01-29T13:43:07Z
dc.date.accessioned2018-11-06T13:48:02Z
dc.date.available2018-01-29T13:43:07Z
dc.date.available2018-11-06T13:48:02Z
dc.date.created2018-01-29T13:43:07Z
dc.date.issued2014-10
dc.identifierBenalcazar Palacios, Marco Enrique; Brun, Marcel; Ballarin, Virginia Laura; Automatic Design of Window Operators for the Segmentation of the Prostate Gland in Magnetic Resonance Images; Springer; Ifmbe Proceedings; 49; 10-2014; 417-420
dc.identifier1680-0737
dc.identifierhttp://hdl.handle.net/11336/34830
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1879548
dc.description.abstractW-operators are nonlinear image operators that are translation invariant and locally defined inside a finite spatial window. In this work, we consider the problem of automatic design of W-operators for the segmentation of magnetic resonance (MR) volumes as a problem of classifier design. We propose to segment the objects of interest in an MR volume by classifying each pixel of its slices as either part of the objects of interest or background. The classifiers used here are the artificial feed-forward neural networks. The proposed method is applied to the segmentation of the two main regions of the prostate gland: the peripheral zone and the central gland. Performance evaluation was carried out on the volumes of the Prostate-3T collection of the NCI-ISBI 2013 Challenge. The results obtained show the suitability of our approach as a marker detector of the prostate gland.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/978-3-319-13117-7_107
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007%2F978-3-319-13117-7_107
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectW-operator
dc.subjectsegmentation
dc.subjectmagnetic resonance
dc.subjectprostate gland
dc.subjectfeed-forward neural network
dc.titleAutomatic Design of Window Operators for the Segmentation of the Prostate Gland in Magnetic Resonance Images
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución