dc.creatorDuoandikoextea, Javier
dc.creatorMartín Reyes, Francisco Javier
dc.creatorOmbrosi, Sheldy Javier
dc.date.accessioned2017-01-25T19:58:09Z
dc.date.available2017-01-25T19:58:09Z
dc.date.created2017-01-25T19:58:09Z
dc.date.issued2013-09
dc.identifierDuoandikoextea, Javier; Martín Reyes, Francisco Javier; Ombrosi, Sheldy Javier; Calderón weights as Muckenhoupt weights; Indiana University; Indiana University Mathematics Journal; 62; 3; 9-2013; 891-910
dc.identifier0022-2518
dc.identifierhttp://hdl.handle.net/11336/11929
dc.description.abstractThe Calderón operator S is the sum of the the Hardy averaging operator and its adjoint. The weights w for which S is bounded on L p(w) are the Calderón weights of the class Cp. We prove a characterization of the weights in Cp by a single condition which allows us to see that Cp is the class of Muckenhoupt weights associated with a maximal operator defined through a basis in (0,∞). The same condition characterizes the weighted weak-type inequalities for 1 < p < ∞, but that the weights for the strong type and the weak type differ for p = 1. We also prove that the weights in Cp do not behave like the usual Ap weights with respect to some properties and, in particular, we answer an open question on extrapolation for Muckenhoupt bases without the openness property.
dc.languageeng
dc.publisherIndiana University
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.iumj.indiana.edu/oai/2013/62/4971/4971.xml
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1512/iumj.2013.62.4971
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectCALDERÓN OPERATOR
dc.subjectMAXIMAL OPERATOR
dc.subjectMUCKENHOUPT BASES
dc.subjectWEIGHTED INEQUALITIES
dc.titleCalderón weights as Muckenhoupt weights
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución