dc.creatorCantero, Maria del Rocio
dc.creatorPérez, Paula Luciana
dc.creatorSmoler, Mariano
dc.creatorVilla Etchegoyen, Cecilia
dc.creatorCantiello, Horacio Fabio
dc.date.accessioned2018-06-07T18:29:41Z
dc.date.accessioned2018-11-06T13:40:47Z
dc.date.available2018-06-07T18:29:41Z
dc.date.available2018-11-06T13:40:47Z
dc.date.created2018-06-07T18:29:41Z
dc.date.issued2016-06
dc.identifierCantero, Maria del Rocio; Pérez, Paula Luciana; Smoler, Mariano; Villa Etchegoyen, Cecilia; Cantiello, Horacio Fabio; Electrical Oscillations in Two-Dimensional Microtubular Structures; Nature Publishing Group; Scientific Reports; 6; 6-2016; 1-16
dc.identifier2045-2322
dc.identifierhttp://hdl.handle.net/11336/47724
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1878073
dc.description.abstractMicrotubules (MTs) are unique components of the cytoskeleton formed by hollow cylindrical structures of αβ tubulin dimeric units. The structural wall of the MT is interspersed by nanopores formed by the lateral arrangement of its subunits. MTs are also highly charged polar polyelectrolytes, capable of amplifying electrical signals. The actual nature of these electrodynamic capabilities remains largely unknown. Herein we applied the patch clamp technique to two-dimensional MT sheets, to characterize their electrical properties. Voltage-clamped MT sheets generated cation-selective oscillatory electrical currents whose magnitude depended on both the holding potential, and ionic strength and composition. The oscillations progressed through various modes including single and double periodic regimes and more complex behaviours, being prominent a fundamental frequency at 29 Hz. In physiological K+ (140 mM), oscillations represented in average a 640% change in conductance that was also affected by the prevalent anion. Current injection induced voltage oscillations, thus showing excitability akin with action potentials. The electrical oscillations were entirely blocked by taxol, with pseudo Michaelis-Menten kinetics and a KD of ~1.29 μM. The findings suggest a functional role of the nanopores in the MT wall on the genesis of electrical oscillations that offer new insights into the nonlinear behaviour of the cytoskeleton.
dc.languageeng
dc.publisherNature Publishing Group
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1038/srep27143
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/srep27143
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectmicrotúbulos
dc.subjectoscilaciones
dc.subjectpatch clamp
dc.titleElectrical Oscillations in Two-Dimensional Microtubular Structures
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución