dc.creatorFarinati, Marco Andrés
dc.creatorGarcia Galofre, Juliana
dc.date.accessioned2017-06-26T20:00:15Z
dc.date.available2017-06-26T20:00:15Z
dc.date.created2017-06-26T20:00:15Z
dc.date.issued2016-10
dc.identifierFarinati, Marco Andrés; Garcia Galofre, Juliana; A differential bialgebra associated to a set theoretical solution of the Yang–Baxter equation; Elsevier Science; Journal Of Pure And Applied Algebra; 220; 10; 10-2016; 3454-3475
dc.identifier0022-4049
dc.identifierhttp://hdl.handle.net/11336/18914
dc.identifierCONICET Digital
dc.identifierCONICET
dc.description.abstractFor a set theoretical solution of the Yang–Baxter equation (X, σ), we define a d.g. bialgebra B = B(X, σ), containing the semigroup algebra A = k{X}/xy = zt : σ(x, y) = (z,t) , such that k ⊗A B ⊗A k and HomA−A(B, k) are respectively the homology and cohomology complexes computing biquandle homology and cohomology defined in [2,5] and other generalizations of cohomology of rack-quandle case (for example defined in [4]). This algebraic structure allows us to show the existence of an associative product in the cohomology of biquandles, and a comparison map with Hochschild (co)homology of the algebra A.
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jpaa.2016.04.010
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022404916300184
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1508.07970
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectYang Baxter Equation
dc.subjectRack
dc.subjectBiquandles Biracks
dc.subjectCohomology
dc.subjectQuandles
dc.titleA differential bialgebra associated to a set theoretical solution of the Yang–Baxter equation
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución