dc.creatorAimar, Hugo Alejandro
dc.creatorRamos, Wilfredo Ariel
dc.date.accessioned2017-04-11T21:06:45Z
dc.date.accessioned2018-11-06T13:39:48Z
dc.date.available2017-04-11T21:06:45Z
dc.date.available2018-11-06T13:39:48Z
dc.date.created2017-04-11T21:06:45Z
dc.date.issued2015-10
dc.identifierAimar, Hugo Alejandro; Ramos, Wilfredo Ariel; Continuous and localized Riesz bases for spaces defined by Muckenhoupt weights; Elsevier; Journal Of Mathematical Analysis And Applications; 430; 1; 10-2015; 417-427
dc.identifier0022-247X
dc.identifierhttp://hdl.handle.net/11336/15188
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1877885
dc.description.abstractLet w be an A∞-Muckenhoupt weight in R. Let L2(wdx) denote the space of square integrable real functions with the measure w(x)dx and the weighted scalar product f, g w = R f g wdx. By regularization of an unbalanced Haar system in L2(wdx) we construct absolutely continuous Riesz bases with supports as close to the dyadic intervals as desired. Also the Riesz bounds can be chosen as close to 1 as desired. The main tool used in the proof is Cotlar’s Lemma.
dc.languageeng
dc.publisherElsevier
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X15004461
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jmaa.2015.05.003
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectRiesz bases
dc.subjectHaar wavelets, basis perturbations
dc.subjectMuckenhoupt weights
dc.subjectCotlars Lemma
dc.titleContinuous and localized Riesz bases for spaces defined by Muckenhoupt weights
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución