dc.creatorBarmak, Jonathan Ariel
dc.creatorSadofschi Costa, Iván
dc.date.accessioned2018-08-15T04:08:25Z
dc.date.accessioned2018-11-06T13:38:59Z
dc.date.available2018-08-15T04:08:25Z
dc.date.available2018-11-06T13:38:59Z
dc.date.created2018-08-15T04:08:25Z
dc.date.issued2017-01
dc.identifierBarmak, Jonathan Ariel; Sadofschi Costa, Iván; On a question of R.H. Bing concerning the fixed point property for two-dimensional polyhedra; Academic Press Inc Elsevier Science; Advances in Mathematics; 305; 1-2017; 339-350
dc.identifier0001-8708
dc.identifierhttp://hdl.handle.net/11336/55548
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1877763
dc.description.abstractIn 1969 R.H. Bing asked the following question: Is there a compact two-dimensional polyhedron with the fixed point property which has even Euler characteristic? In this paper we prove that there are no spaces with these properties and abelian fundamental group. We also show that the fundamental group of such a complex cannot have trivial Schur multiplier.
dc.languageeng
dc.publisherAcademic Press Inc Elsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0001870816312488
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.aim.2016.09.025
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectFIXED POINT PROPERTY
dc.subjectHOMOTOPY CLASSIFICATION
dc.subjectNIELSEN FIXED POINT THEORY
dc.subjectTWO-DIMENSIONAL COMPLEXES
dc.titleOn a question of R.H. Bing concerning the fixed point property for two-dimensional polyhedra
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución