dc.creatorYannibelli, Virginia Daniela
dc.creatorAmandi, Analia Adriana
dc.date.accessioned2016-07-29T21:46:23Z
dc.date.accessioned2018-11-06T13:34:28Z
dc.date.available2016-07-29T21:46:23Z
dc.date.available2018-11-06T13:34:28Z
dc.date.created2016-07-29T21:46:23Z
dc.date.issued2015-09
dc.identifierYannibelli, Virginia Daniela; Amandi, Analia Adriana; Hybrid Evolutionary Algorithm with Adaptive Crossover, Mutation and Simulated Annealing Processes to Project Scheduling; Springer; Lecture Notes In Computer Science; 9375; 9-2015; 340-351
dc.identifier0302-9743
dc.identifierhttp://hdl.handle.net/11336/6838
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1877009
dc.description.abstractIn this paper, we address a project scheduling problem that considers a priority optimization objective for project managers. This objective involves assigning the most effective set of human resources to each project activity. To solve the problem, we propose a hybrid evolutionary algorithm. This algorithm uses adaptive crossover, mutation and simulated annealing processes in order to improve the performance of the evolutionary search. These processes adapt their behavior based on the diversity of the evolutionary algorithm population. We compare the performance of the hybrid evolutionary algorithm with those of the algorithms previously proposed in the literature for solving the addressed problem. The obtained results indicate that the hybrid evolutionary algorithm significantly outperforms the previous algorithms.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/chapter/10.1007%2F978-3-319-24834-9_40
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/978-3-319-24834-9_40
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-24834-9_40
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectProject scheduling
dc.subjectHuman resource assignment
dc.subjectMulti-skilled resources
dc.subjectHybrid evolutionary algorithms
dc.titleHybrid Evolutionary Algorithm with Adaptive Crossover, Mutation and Simulated Annealing Processes to Project Scheduling
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución