Argentina
| Artículos de revistas
On a Ermakov-Painlevé II reduction in three-ion electrodiffusion: a Dirichlet boundary value problem
Fecha
2015-08Registro en:
Amster, Pablo Gustavo; Rogers, Colin; On a Ermakov-Painlevé II reduction in three-ion electrodiffusion: a Dirichlet boundary value problem; Amer Inst Mathematical Sciences; Discrete And Continuous Dynamical Systems; 35; 8; 8-2015; 3277-3292
1078-0947
CONICET Digital
CONICET
Autor
Amster, Pablo Gustavo
Rogers, Colin
Resumen
Two-point boundary value problems of Dirichlet type are investigated for a ErmakovPainlev´e II equation which arises out of a reduction of a three-ion electrodiffusion Nernst-Planck model system. In addition, it is shown how Ermakov invariants may be employed to solve a hybrid Ermakov-Painlev´e II triad in terms of a solution of the single component integrable Ermakov-Painlev´e II reduction. The latter is related to the classical Painlev´e II equation.