dc.creatorLevis, Fabián Eduardo
dc.creatorMarano, M.
dc.date.accessioned2017-08-09T15:29:30Z
dc.date.accessioned2018-11-06T13:33:43Z
dc.date.available2017-08-09T15:29:30Z
dc.date.available2018-11-06T13:33:43Z
dc.date.created2017-08-09T15:29:30Z
dc.date.issued2013-01
dc.identifierLevis, Fabián Eduardo; Marano, M.; Best Simultaneous Monotone Approximants in Orlicz Spaces; Taylor & Francis; Numerical Functional Analysis And Optimization; 34; 1; 1-2013; 16-35
dc.identifier0163-0563
dc.identifierhttp://hdl.handle.net/11336/22111
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1876837
dc.description.abstractLet f = (f1, , fm ), where fj belongs to the Orlicz space [0, 1], and let w = (w1, , wm ) be an m-tuple of m positive weights. If ⊂ [0, 1] is the class of nondecreasing functions, we denote by ,w(f, ) the set of best simultaneous monotone approximants to f, that is, all the elements g ∈ minimizing m j=1 1 0 (|fj − g |)wj, where is a convex function, (t) > 0 for t > 0, and (0) = 0. In this work, we show an explicit formula to calculate the maximum and minimum elements in ,w(f, ). In addition, we study the continuity of the best simultaneous monotone approximants.
dc.languageeng
dc.publisherTaylor & Francis
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/01630563.2012.706770
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/01630563.2012.706770
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectSIMULTANEOUS APPROXIMATION
dc.subjectMONOTONE APPROXIMATION
dc.subjectORLICZ SPACES
dc.titleBest Simultaneous Monotone Approximants in Orlicz Spaces
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución