dc.creatorGomez, Daniel Osvaldo
dc.creatorDe Luca, Edward E.
dc.creatorMininni, Pablo Daniel
dc.date.accessioned2018-05-30T17:32:32Z
dc.date.accessioned2018-11-06T13:33:07Z
dc.date.available2018-05-30T17:32:32Z
dc.date.available2018-11-06T13:33:07Z
dc.date.created2018-05-30T17:32:32Z
dc.date.issued2016-02
dc.identifierGomez, Daniel Osvaldo; De Luca, Edward E.; Mininni, Pablo Daniel; Simulations of the Kelvin-Helmholtz instability driven by coronal mass ejections in the turbulent corona; IOP Publishing; Astrophysical Journal; 818; 2; 2-2016; 1261-1269
dc.identifier0004-637X
dc.identifierhttp://hdl.handle.net/11336/46656
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1876697
dc.description.abstractRecent high-resolution Atmospheric Imaging Assembly/Solar Dynamics Observatory images show evidence of the development of the Kelvin–Helmholtz (KH) instability, as coronal mass ejections (CMEs) expand in the ambient corona. A large-scale magnetic field mostly tangential to the interface is inferred, both on the CME and on the background sides. However, the magnetic field component along the shear flow is not strong enough to quench the instability. There is also observational evidence that the ambient corona is in a turbulent regime, and therefore the criteria for the development of the instability are a priori expected to differ from the laminar case. To study the evolution of the KH instability with a turbulent background, we perform three-dimensional simulations of the incompressible magnetohydrodynamic equations. The instability is driven by a velocity profile tangential to the CME–corona interface, which we simulate through a hyperbolic tangent profile. The turbulent background is generated by the application of a stationary stirring force. We compute the instability growth rate for different values of the turbulence intensity, and find that the role of turbulence is to attenuate the growth. The fact that KH instability is observed sets an upper limit on the correlation length of the coronal background turbulence.
dc.languageeng
dc.publisherIOP Publishing
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.3847/0004-637X/818/2/126/meta
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3847/0004-637X/818/2/126
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectSUN
dc.subjectCORONAL MASS EJECTIONS
dc.subjectINSTABILITIES
dc.subjectTURBULENCE
dc.titleSimulations of the Kelvin-Helmholtz instability driven by coronal mass ejections in the turbulent corona
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución