dc.creatorAndruchow, Esteban
dc.creatorCorach, Gustavo
dc.creatorMbekhta, Mostafa
dc.date.accessioned2015-08-14T21:14:49Z
dc.date.accessioned2018-11-06T13:28:03Z
dc.date.available2015-08-14T21:14:49Z
dc.date.available2018-11-06T13:28:03Z
dc.date.created2015-08-14T21:14:49Z
dc.date.issued2013-12
dc.identifierAndruchow, Esteban; Corach, Gustavo; Mbekhta, Mostafa; A geometry for split operators; Springer; Integral Equations and Operator Theory; 77; 4; 12-2013; 559-579
dc.identifier0378-620X
dc.identifierhttp://hdl.handle.net/11336/1691
dc.identifier1420-8989
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1875666
dc.description.abstractWe study the set X of split operators acting in the Hilbert space H: X = {T ∈ B(H) : N(T) ∩ R(T) = {0} and N(T) + R(T) = H}. Inside X , we consider the set Y: Y = {T ∈ X : N(T) ⊥ R(T)}. Several characterizations of these sets are given. For instance T ∈ X if and only if there exists an oblique projection Q whose range is N(T) such that T + Q is invertible, if and only if T posseses a commuting (necessarilly unique) pseudo-inverse S (i.e. T S = ST,TST = T and STS = S). Analogous characterizations are given for Y. Two natural maps are considered: q : X → Q := {oblique projections in H}, q(T) = PR(T )//N(T ) and p : Y → P := {orthogonal projections in H}, p(T) = PR(T ), where PR(T )//N(T ) denotes the projection onto R(T) with nullspace N(T), and PR(T ) denotes the orthogonal projection onto R(T). These maps are in general non continuous, subsets of continuity are studied. For the map q these are: similarity orbits, and the subsets Xck ⊂ X of operators with rank k < ∞, and XFk ⊂ X of Fredholm operators with nullity k < ∞. For the map p there are analogous results. We show that the interior of X is XF0 ∪ XF1 , and that Xck and XFk are arc-wise connected differentiable manifolds.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00020-013-2086-9
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00020-013-2086-9
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00020-013-2086-9
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectSPLIT OPERATOR
dc.subjectOBLIQUE PROJECTION
dc.subjectPROJECTIONS PSEUDO-INVERSES
dc.subjectGROUP INVERSE OPERATORS
dc.subjectEP OPERATORS
dc.titleA geometry for split operators
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución