dc.creatorMercader, Andrew Gustavo
dc.creatorDuchowicz, Pablo Román
dc.date.accessioned2018-06-14T19:44:16Z
dc.date.accessioned2018-11-06T13:25:48Z
dc.date.available2018-06-14T19:44:16Z
dc.date.available2018-11-06T13:25:48Z
dc.date.created2018-06-14T19:44:16Z
dc.date.issued2015-03
dc.identifierMercader, Andrew Gustavo; Duchowicz, Pablo Román; Enhanced replacement method integration with genetic algorithms populations in QSAR and QSPR theories; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 149; 3-2015; 117-122
dc.identifier0169-7439
dc.identifierhttp://hdl.handle.net/11336/48699
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1875268
dc.description.abstractThe selection of an optimal set of molecular descriptors from a much larger collection of such regression variables is a vital step in the elaboration of most QSAR and QSPR models. The aim of this work is to continue advancing this important selection process by combining the enhanced replacement method (ERM) and the well-known genetic algorithms (GA). These approaches had previously proven to yield near-optimal results with a much smaller number of linear regressions than a full search. The newly proposed algorithms were tested on four different experimental datasets, formed by collections of 116, 200, 78, and 100 experimental records from different compounds and 1268, 1338, 1187, and 1306 molecular descriptors, respectively. The comparisons showed that the new alternative ERMp (combination of ERM with a GA population) further improves ERM, it has previously been shown that the latter is superior to GA for the selection of an optimal set of molecular descriptors from a much greater pool.
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.chemolab.2015.10.007
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0169743915002580
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectTeoría QSPR-QSAR
dc.subjectMétodo del Reemplazo
dc.subjectAnálisis de Regresión Lineal Multivariable
dc.subjectTécnica de selección de variables
dc.titleEnhanced replacement method integration with genetic algorithms populations in QSAR and QSPR theories
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución