dc.creatorEchevarria, Romina Noel
dc.creatorFranca, Carlos Alberto
dc.creatorTascon, Marcos
dc.creatorCastells, Cecilia Beatriz Marta
dc.creatorKeunchkarian, Sonia
dc.date.accessioned2018-08-08T19:22:16Z
dc.date.accessioned2018-11-06T13:24:42Z
dc.date.available2018-08-08T19:22:16Z
dc.date.available2018-11-06T13:24:42Z
dc.date.created2018-08-08T19:22:16Z
dc.date.issued2016-11
dc.identifierEchevarria, Romina Noel; Franca, Carlos Alberto; Tascon, Marcos; Castells, Cecilia Beatriz Marta; Keunchkarian, Sonia; Chiral ligand-exchange chromatography with Cinchona alkaloids. Exploring experimental conditions for enantioseparation of α-amino acids; Elsevier Science; Microchemical Journal; 129; 11-2016; 104-110
dc.identifier0026-265X
dc.identifierhttp://hdl.handle.net/11336/54657
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1875094
dc.description.abstractThe natural Cinchona alkaloid quinidine as chiral selector in chiral ligand-exchange chromatography was systematically studied. Chromatographic conditions for enantioseparation of twentya-amino acidswere first timestudied by changing mobile phase parameters such as pH, concentration of organic solvent, type of salt, ligand to metal ratio and also column temperature. Maximum retention and enantioselectivity factors were observed at the region close to pH = 8, since the tertiary amine (the quinuclidinic nitrogen) of the quinidine is protonated only in a small degree, and therefore is available for the chelate formation. Additionally at this pH value there is no other competing ligand for complex the metallic cation. The thermodynamic transfer parameters of the enantiomers from the mobile to the stationary phase from van't Hoff plots within the range of 10-35 °C were estimated. Thus, the differences in the transfer enthalpy Δ(ΔH), and transfer entropy Δ(ΔS) enabled an investigation of the origin of the differences in interaction energies Δ(ΔG). Finally, the molecular geometry of the formed diastereomeric complexes was modelled and energetic differences between both compounds were calculated by a semi empirical method.
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.microc.2016.06.019
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0026265X1630100X
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectCHIRAL LIGAND-EXCHANGE CHROMATOGRAPHY
dc.subjectCINCHONA ALKALOIDS
dc.subjectMOLECULAR GEOMETRY
dc.subjectΑ-AMINO ACIDS
dc.titleChiral ligand-exchange chromatography with Cinchona alkaloids. Exploring experimental conditions for enantioseparation of α-amino acids
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución