dc.creatorReggiani, Silvio Nicolás
dc.date.accessioned2017-07-21T22:12:13Z
dc.date.accessioned2018-11-06T13:22:08Z
dc.date.available2017-07-21T22:12:13Z
dc.date.available2018-11-06T13:22:08Z
dc.date.created2017-07-21T22:12:13Z
dc.date.issued2012-12
dc.identifierReggiani, Silvio Nicolás; A Berger-type theorem for metric connections with skew-symmetric torsion; Elsevier Science; Journal Of Geometry And Physics; 65; 12-2012; 26-34
dc.identifier0393-0440
dc.identifierhttp://hdl.handle.net/11336/21144
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1874735
dc.description.abstractWe prove a Berger-type theorem which asserts that if the orthogonal subgroup generated by the torsion tensor (pulled back to a point by parallel transport) of a metric connection with skew-symmetric torsion is not transitive on the sphere, then the space must be locally isometric to a Lie group with a bi-invariant metric or its symmetric dual (we assume the space to be locally irreducible). We also prove that a (simple) Lie group with a bi-invariant metric admits only two flat metric connections with skew-symmetric torsion: the two flat canonical connections. In particular, we get a refinement of a well-known theorem of Cartan and Schouten. Finally, we show that the holonomy group of a metric connection with skew-symmetric torsion on these spaces generically coincides with the Riemannian holonomy.
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.geomphys.2012.11.012
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0393044012002124
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectMETRIC CONNECTION
dc.subjectFLAT CONNECTION
dc.subjectSKEW-SYMMETRIC TORSION
dc.subjectHOLONOMY
dc.titleA Berger-type theorem for metric connections with skew-symmetric torsion
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución